
# CIRCUITS NON LINEAIRES LA DIODE

# Fonctionnement et modèles de la diode

### Relation entre courant et tension

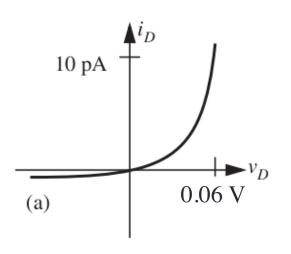
$$i_{D} = I_{S} \left( e^{\frac{v_{D}}{nU_{T}}} - 1 \right)$$

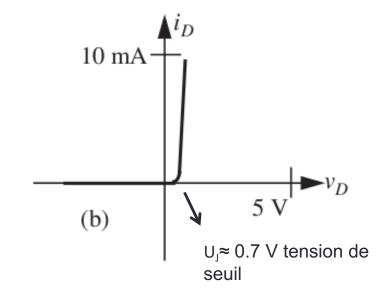




1<n<2 (souvent on considère n=1)

 $U_T$  tension thermique  $U_T = kT/q = 0.025 \text{ V}$  à température ambiante


k, constante de Boltzmann =  $1.380 \times 10^{-23}$ J/K


T, température en Kelvin: 293 K

q, charge unitaire: 1.602 × 10<sup>-19</sup> C

 $I_{\rm S}$ , courant de saturation  $\approx 10^{-12}\,{\rm A}$ ,  $[10^{-15}\,{\rm A}-10^{-9}]$ 

## Charactéristique (fonction i<sub>D</sub> - v<sub>D</sub>)





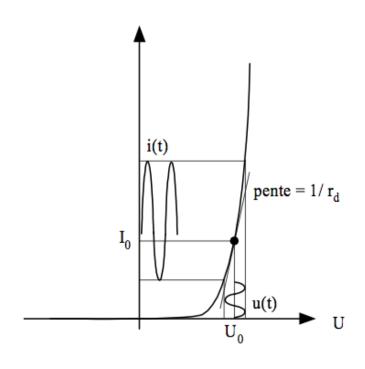
 $I_S$  courant de saturation =10<sup>-12</sup> A  $v_D$  = 0.05 V  $\rightarrow$   $i_D$  = 6.4 × 10<sup>-12</sup> A = 6.4 pA  $v_D$  = 0.5 V  $\rightarrow$   $i_D$  = 0.49 × 10<sup>-3</sup> A =0.49 mA  $v_D$  = 0.6 V  $\rightarrow$   $i_D$  = 2.6 × 10<sup>-2</sup> A = 26 mA  $i_D$  = 8mA  $\rightarrow$   $v_D$  = 0.57 V  $v_D$  = -5 V  $\rightarrow$   $i_D$   $\approx$  -10<sup>-12</sup> A

$$i_D = I_S(e^{\frac{v_D}{nU_T}} - 1)$$

Négligeable pour la plupart des tensions en direct

# Capteurs de température pour microprocesseurs

Les hautes fréquences de fonctionnement des microprocesseurs (fréquence d'horloge/clock) engendre une augmentation de la température du système. Cette température ne devrait pas excéder 110°C (limite thermique) pour que les circuits fonctionnent correctement. Une solution intégrée dans le microprocesseur lui-même pour mesurer la température dans le microprocesseur utilise un circuit contenant une diode.


Deux courants connus sont forcés l'un après l'autre à travers la diode. Si l'on mesure les deux tensions engendrées et on les soustrait algébriquement on obtiens:

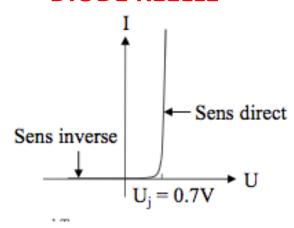
$$v_{D1} - v_{D2} = \frac{kT}{q} \ln \left( \frac{i_{D1}}{i_{D2}} \right)$$

Cela donne la valeur de T, qui est d'ailleurs indépendante de la valeur de I<sub>s</sub>, donc de la diode spécifique choisie.

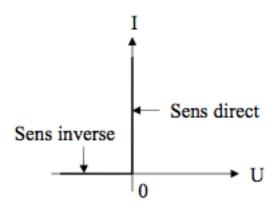
### Résistance dynamique (ou différencielle)

### Modèle d'ordre exponentiel



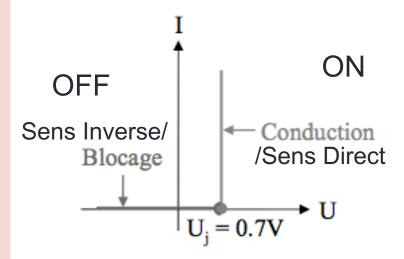

 $r_d$  est la résistance dynamique ou différencielle de la diode au point de travail ( $I_0$ ,  $V_0$ )

Elle peut être calculée en ce point en dérivant l'expression de la tension par le courant


$$r_d = nU_T/I_0 = nkT/qI_0$$

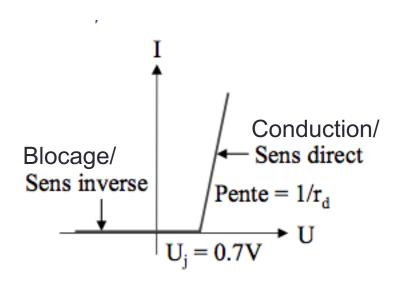
## Charactéristique

### **DIODE REELLE**




#### **DIODE IDEALE**

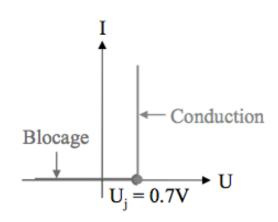



## Modèles grands signaux à segments

### Modèle d'ordre "0"




ON:  $U = U_j$ ,  $I \ge 0$ OFF:  $U < U_i$ , I = 0

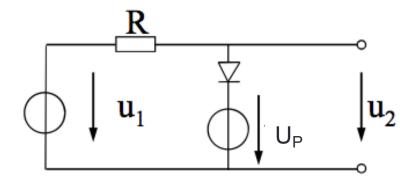

### Modèle d'ordre "1"



ON:  $U = U_j + r_d I$ ,  $I \ge 0$ OFF:  $U < U_i$ , I = 0

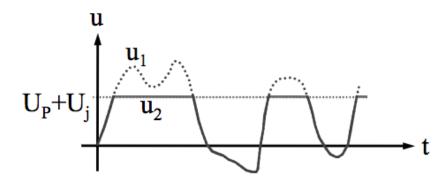
### La diode: modèle à segments d'ordre "0"



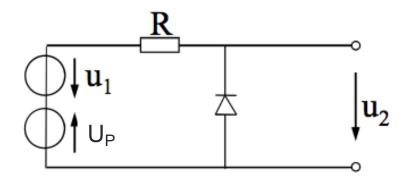



La diode, selon ce modèle:

- Soutient un potentiel v<sub>D</sub> qui peut varier seulement entre ∞ et U<sub>j</sub>, avec U<sub>i</sub> > 0. [U<sub>i</sub> vaut 0.7 V, si pas indiqué autrement].
- Ne conduit pas si la tension v<sub>D</sub> est inférieur à U<sub>j</sub> (y compris pour les valeurs négatifs de v<sub>D</sub>)
- Lorsque la diode conduit, la chute de potentiel à ses bornes est fixe et vaut U<sub>i</sub> (autrement dit, v<sub>D</sub> = U<sub>i</sub> quand la diode conduit)

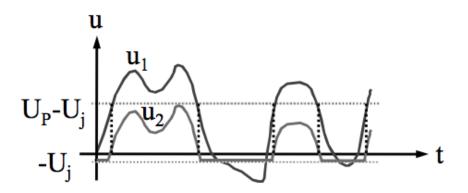

# Exemples de circuits passifs non-linéaires basés sur la diode

### Circuit limitant




U<sub>P</sub> constant

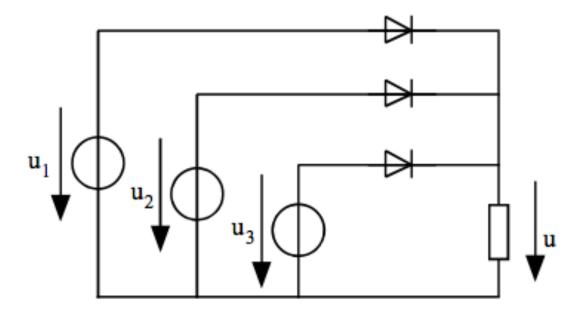
u<sub>1</sub> function du temps




### Détecteur de seuil



U<sub>P</sub> constant

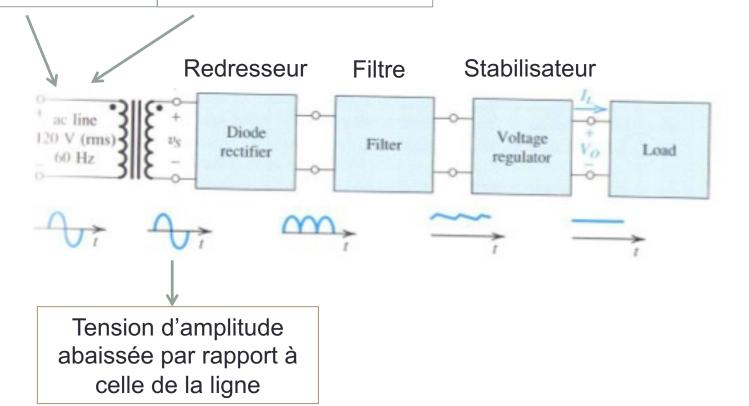

u<sub>1</sub> function du temps



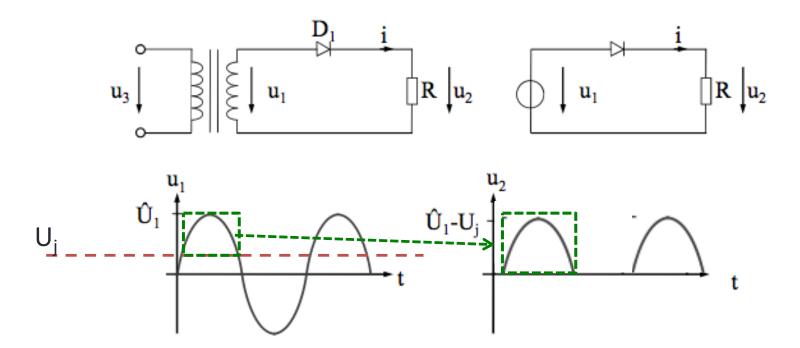
quand  $u_2 \ge -U_i$ 

u<sub>2</sub> est égal à une version atténuée (shiftée vers le bas) de u<sub>1</sub> lorsque u<sub>1</sub> atteint un certain seuil

## Détecteur du signal le plus positif



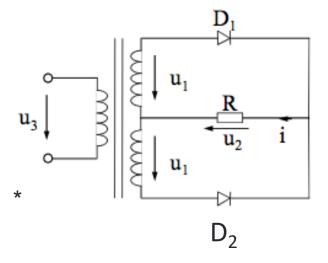

u corresponds à la tension du générateur qui a valeur majeure parmi les trois générateur du circuit. Seulement cette diode conduit, les autres sont bloquées.


References: Sedra-Smith & Polycopié

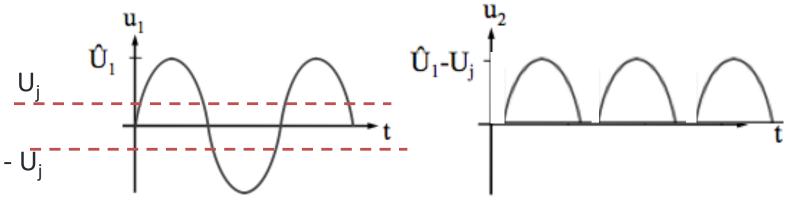
# Schéma bloc d'une alimentation DC : conversion de AC (courant alternatif) à DC (courant continu)

Tension de ligne standard standard Nord- américaine: 220V 120V 50 Hz 60 Hz

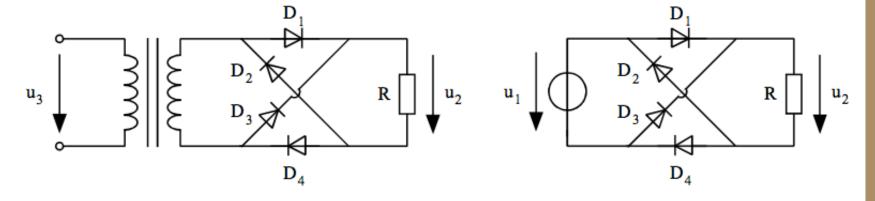



## Redresseur simple alternance

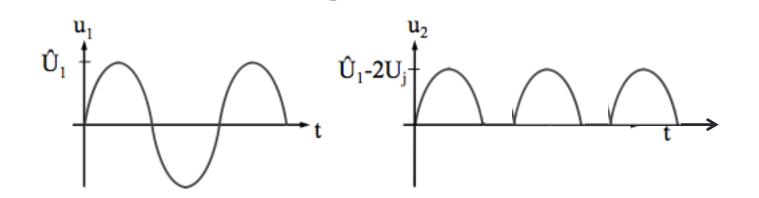



DIODE OFF => 
$$i = 0$$
, and  $u_2 = 0$ ,  $u_1 < U_j$   
DIODE ON =>  $u_1 > U_j$ ,  $u_2 = u_1$ -Uj

EE 295 6 La Diode 16

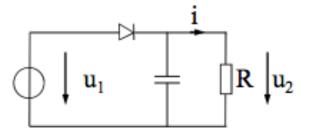

### Redresseur double alternance



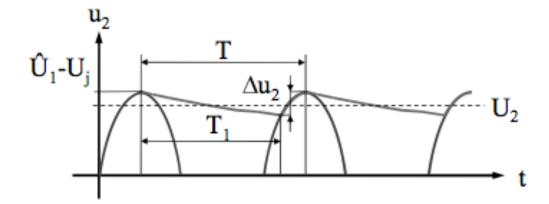

La composante DC (rms) de la sortie u<sub>2</sub> est deux fois plus grande que celle du redresseur simple alternance.



### Le redresseur en pont

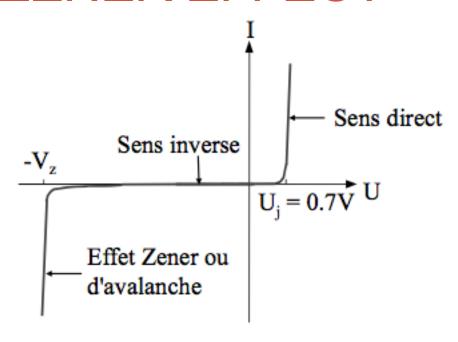



6 La Diode




EE 295 6 La Diode 18

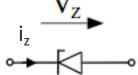
## **Filtrage**




Une grande capacité filtre le signal, limitant la vitesse à laquelle le signal même peut varier



 $\Delta u_2$  (ondulation residuelle) ripple voltage  $\approx$  T/RC  $U_2$  (approximation par excès)

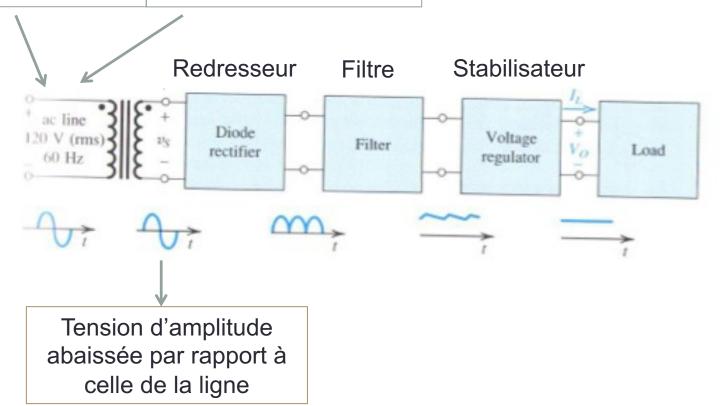

### ZENER EFFECT



← Caractéristique complète de la diode

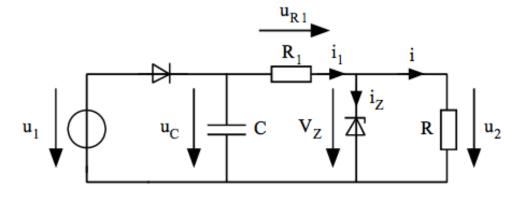
DIODE ZENER: diode caractérisé par une « tension Zener »  $V_Z$  stable. Cette diode est utilisés dans un circuit primairement dans cette zone de polarisation avec fonction de stabilisateur de tension.

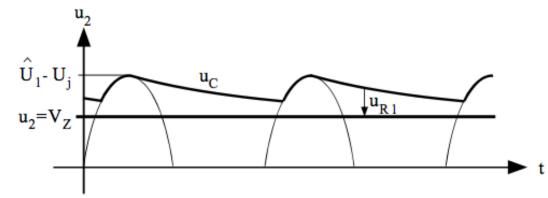
i<sub>z</sub> doit être majeur d'une valeur spécifique.




 $i_z$  et  $V_z$  ont des valeurs positifs.

References: Sedra-Smith & Polycopié


## Schéma bloc d'une alimentation DC : conversion de AC (courant alternatif) à DC (courant continu)

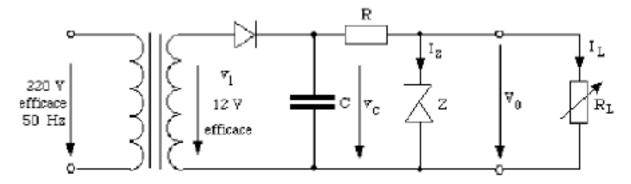

Tension de ligne standard Standard Nord- américaine: 120V 50 Hz Tension de ligne standard Nord- américaine: 60 Hz



### Stabilisateur de tension avec diode Zener

Ce régulateur avec diode Zener est utilisé lorsqu'une sortie constante est nécessaire et le 'ripples' de la tension de sortie sur u<sub>2</sub> ne peuvent pas être tolérées.






$$R_1 < \frac{\hat{U}_1 - U_j - \Delta u_C - V_Z}{I_{Z_{min}} + V_z / R}$$

pour garantir un courant minimal dans la diode Zener.

### Exercice 2

On donne le circuit suivant:



Avec  $I_{zmin}$  =5 mA,  $V_Z$  = 10 V et  $U_J$  = 0. On veut assurer en permanence  $V_0$ =10 V et une tension  $v_C(t) \ge 14$  V.  $I_L \in [0 ; 50 \text{ mA}]$  suite a différents valeurs de  $R_L$ .

- a) Dessiner l'allure de  $v_1(t)$ ,  $v_C(t)$  et  $V_0$  sur le même graphique.
- b) Calculer la valeur maximale admissible pour R.
- c) Calculer la capacité de filtrage pour répondre aux conditions sur  $v_{\text{C}}(t)$ .
- d) Calculer  $I_{zmax}$ , en déduire la puissance instantanée maximum dissipée dans la diode zener et dans la résistance R, quand R vaut 73  $\Omega$ . [ $P_{ZENER}=V_Z \times iz$ ]